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Using Demographic Pattern Analysis to Predict COVID-19 Fatalities

on the US County Level

KLAUS MUELLER and ERIC PAPENHAUSEN, Akai Kaeru LLC, Stony Brook, NY USA

Unlike pandemics in the past, COVID-19 has hit us in the midst of the information age. We have built vast capabilities to collect

and store data of any kind that can be analyzed in myriad ways to help us mitigate the impact of this catastrophic disease.

Specifically for COVID-19, data analysis can help local governments to plan the allocation of testing kits, testing stations, and

primary care units, and it can help them in setting guidelines for residents, such as the need for social distancing, the use of

face masks, and when to open local businesses that enable human contact. Further, it can also lead to a better understanding

of pandemics in general and so inform policy makers on the regional and national level. All of this can save both cost and

lives. In this article, we show the results of an ongoing study we conducted using a prominent regularly updated dataset.

We used a pattern mining engine we developed to find specific characteristics of US counties that appear to expose them to

higher COVID-19 mortality. Furthermore, we also show that these characteristics can be used to predict future COVID-19

mortality.
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1 INTRODUCTION

The impact of a massive disaster like a pandemic differs from other more normal causes of death, such as cancer,
heart disease, car accidents, and the like. What makes them so different is their sudden appearance that claims
many lives in a short span of time. People get infected and die almost at random, which causes great societal
disruption. However, lacking concrete precedence, governments are left without proper guidelines on how to
lessen and control the disaster’s massive human and economic losses.
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This is where real-time data analytics can come to the rescue. Thankfully, and in contrast to previous such
disastrous events, there is no shortage of data, both on the underlying demographics as a whole and on the
spread of the disease in particular. In this article,we report on a study we conducted using a state-of-the-art
machine learning approach we developed recently. Our method can identify the specific characteristics of US
counties that appear to expose them to higher COVID-19 mortality, and then utilize these profiles to predict their
prospects of future COVID-19 mortality as the disease spreads.

2 RELATED WORK

COVID-19 has invigorated scientific research [1]. At the time of writing this article the Allen Institute for AI
has compiled a database of over 130,000 research articles on the novel coronavirus [2] and the popular SSRN
COVID-19 paper repository held over 5,000 pre-prints [3] Apart from clinical themes, the prediction of infections,
fatalities, required resources, and so on, have been extensively studied. Many approaches (such as References [4,
5, 6]) are based on the mechanistic Susceptible–Exposed–Infectious–Recovered (SEIR) compartment simulation
model that, at the process level, mimics the way COVID-19 spreads. Popular are also statistical forecasting models
such as that by U Washington’s Institute for Health Metric and Education (IHME) [7]. It uses a mixed effects non-
linear regression model to fit a curve to data from world-wide geographical locations to create projections of
infections, death rates, and health resource demands at the local level. The IHME model has become quite popular,
in part due to its simple yet effective interactive visual dashboard tools [10]. A smaller number of papers propose
the use of AI-inspired models (see References [8, 9]).

2.1 Simulation vs. Statistical Models

Mechanistic models are attractive, since they allow one to simulate the effects of different mitigation measures,
such as quarantining, social distancing, school closings, and so on. However, the model’s many parameters re-
quire accurate estimates of the population in each compartment and their transition rates. This is challenging,
since there still is much uncertainty on the mechanics by which the virus spreads, how many people are in each
compartment at a given time, and how people interact with each other socially. An important parameter is the
disease reproduction rate, R0, which gauges the number of people infected per case. It is rather sensitive to small
changes; a 10% increase in R0, say, from 2.3 to 2.5, can result in an 80% increase in the predicted infections [10].
Hence, these models require constant monitoring and parameter tweaking to enable long-term predictions of
the impact of virus mitigation and re-opening strategies [11].

Statistical methods, such as IHME, do not require tedious parameter tweaking, but since they do not model
how transmission occurs they are not well suited for long-term predictions beyond a few weeks. They critically
depend on data and gain in accuracy as more data become available to refit the curves. In that process they make
strong assumptions with regards to the suitability of the data used for fitting [12]. Data can be unreliable, since
the impact of interventions such as social distancing or partial lockdowns varies among geographical locations.
There are many factors that determine the socio-economic costs of these measures, such as the “protection effect”
and the “adjustment cost effect” [13], which can strongly influence the success of certain intervention strategies
even when implemented in similar ways. Our approach neither simulates nor does it fit data. Rather, it renders
a more precise characterization of local regions than other methods. It emphasizes the explanation of COVID-19
mortality risk, which we show has predictive value.

Other approaches use more conventional statistical models, such as correlation and linear regression to un-
derstand the influence of certain socio-economic factors, such as county-level health variables, urban density,
poverty, modes of commuting, and so on, while controlling for other effects, such as race [14, 15]. Typically these
results are obtained via standard step-wise modeling approaches thatare not overly scalable in the number of
factors and local regions, making the discovery of significant statistical relationships rather tedious. And so, the
magnitude and depth of the discoveries, while certainly insightful, have been somewhat limited. We advocate
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for a more comprehensive approach rooted in data science that can automatically discover precise, statistically
significant relationships (called patterns) from hundreds of socio-economic features thatwould be difficult to
hypothesize and test with current methodologies.

2.2 Public Information Portals

A primary source of information has been the Coronavirus Resource Center at Johns Hopkins University [1].
They constructed dashboards for the US and for the entire world that each showed the respective geographic
maps overlaid with visual representations of the numbers of people tested positive alongside various test and
death statics, leader boards, and temporal growth curve ensembles that compare regions at various scales in
terms of the increase of test cases and deaths. Other dashboards and browser-based interactive visualization of
COVID-19 related data have been made available by the companies Tableau [17], TIBCO [18], Datawrapper [19],
the open source project Nextstrain [20], newspapers like the New York Times, and others. These dashboards and
visualizations illuminate specific aspects related to the outbreak, such as race, hospital overcrowding, test statis-
tics by state, mask compliance by county, unemployment rates and claims, effects on retail, economic inequality,
pathogen evolution, and more.

Google used tracking data gathered through their Google Maps application to create what they call Commu-
nity Mobility Reports [21]. These documents provide mobility trends to several types of venues, such as retail and
recreation, supermarkets and pharmacies, parks, public transport, workplaces, and residential on the country,
state, and county levels. The reports are helpful to assess how local communities comply with social distancing
or open up economies, at least indirectly by ways of traffic load.

3 METHODS

Our study uses the prominent Kaggle repository UNCOVER COVID-19 Challenge sponsored by the Roche Data
Science Coalition [22]. This dataset has about 500 attributes, or features, covering demographics, economics,
infrastructure, and other aspects for each of the 3,007 US counties. Many of these are local socio-economic
vulnerability measurements provided by the CDC [23]. The 500 features result in a 500-dimensional feature
space. Our pattern mining engine looks for regions in this feature space that are occupied with similar counties
that all respond in a similar way to a given target variable of interest, in this case the number of COVID-19
deaths in relation to each county’s population, also called the death rate. Note that counties that are considered
similar do not need to be geographically connected; they just need to have similar characteristics in terms of
their feature values.

Each pattern of similar counties forms what is called a subspace [24]. It is a subpopulation of counties that fit
inside a low-dimensional hypercube with well-defined value ranges of the features that describe the subspace.
This property, and the fact that these subpopulations are typically rather low-dimensional, even when the overall
feature space is not, makes them easy to understand and explain [25]. We exploit this property for the study
presented here and note that while deep neural networks, random forests, and so on, also learn low-dimensional
representations, these are not easily described in terms of their native attributes.

Concretely, given a dataset with attributes {A1A2 . . . .Am P } with P being an attribute of interest, such as
COVID-19 death rate, the goal of pattern mining is to find a hypercube (or pattern) consisting of constraints of
the formAi ∈ [vl , vr ] for i ∈ [1 . . .m] (for example, age > 45, race = Asian), where the points within the pattern
are “interesting.” For our purposes, a pattern of counties will be considered interesting if it is associated with a
COVID-19 death rate that is higher on average than the US county average. The definition of what constitutes a
consistently interesting pattern is based primarily on statistical hypothesis testing. For numerical attributes, we
use the Mann-Whitney test [26] to account for the often non-parametric nature of the data, while for a binary
target attribute, we use the χ2 test for independence.
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Fig. 1. Example pattern 1: (a) 1st attribute: county poverty rate; (b) 2nd attribute: age of county population; (c) 3rd attribute:

county population density; (d) map with the pattern’s counties, color shading denotes COVID-19 death rate.

Extracting the patterns requires extensive search. Our pattern mining algorithm is based on the FP-growth
algorithm [27]. It has the nice property that it only requires scanning the full dataset twice throughout the mining
process. This makes it more scalable in contrast to many other pattern mining algorithms in which the dataset
must be repeatedly scanned. Given many additional optimizations, our pattern mining algorithm can analyze
even large datasets within a couple of minutes.

4 FINDINGS AND RESULTS

In the following, we describe two examples of patterns we extracted and their subsequent use for predictive
analysis. We also describe one additional example where we expose correlations in the extracted patterns.

4.1 Pattern 1: Poor, Aging, Rural Counties are at High COVID-19 Risk

In the visualization in Figure 1(a), each of the purple or yellow data points is a county and the placement along
the horizontal axis is determined by its “poverty rate.” The vertical axis denotes the COVID-19 death rate. The
grey box contains the counties where on average and compared to other US counties an unusually high number
of residents died from COVID-19, in relation to the county’s overall population. Due to its importance, we shall
call it the Box of High Risk. We can observe the high risk, since the points in the box tend to float in higher
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regions, which define higher COVID-19 death rates. The placement of the box tells us that a high poverty rate
(>22.5%) is common for these counties.

We observe that the grey box has a mix of purple and yellow points; however, only the yellow points are
counties where high COVID-19 death rate is consistent. The green Bar of Confidence on top of the plot is an
important diagnostic indicator. Its length is about 30% of the full length and the number next to it reads 0.306.
It means that our risk assessment is still about 70% off. Not all counties with higher poverty rate are at higher
than usual risk of COVID-19 death. While we need to refine the pattern, we are on the right track, since there
are only purple dots outside the grey box. This confirms that our pattern mining engine did not overlook any
county that is of interest for this specific pattern description (the yellow dots).

Next, our pattern mining engine automatically refines the pattern description from above by adding “age
greater than 65” as a second dimension (see Figure 1(b)). Note that we added this constraint only to the counties
that were captured in the initial Box of High Risk. That is why there are fewer counties in this visualization now.
It sharpens our risk assessment to counties with higher poverty rates and aging population. Fittingly, the green
Bar of Confidence now reads 64%. We are getting better, but we still have more work to do to reach 100%—there
are still some purple dots in the Box of High Risk.

The third automatic pattern refinement step leads to the final visualization, in Figure 1(c). It is the same set of
counties as in the previous step, but now ordered from the aspect of “population density.” We observe that it is
the counties with low population density thaton average have a COVID-19 death rate above US average, and our
software places the Box of High Risk at the statistically correct margin. There are no more purple points in the
box, which means that our risk assessment is razor-sharp. The bottom-most green Bar of Confidence confirms
this; it is maxed out at 100%.

Figure 1(d) shows a map of the counties matching the pattern. Darker blue shades denote a higher COVID-19
death rate. According to the pattern’s description these are all poor and aging counties with low population
density; they are on average especially hard hit by the COVID-19 virus. While it is well known by now that
older residents are more vulnerable to COVID-19, the pattern tells us that this high risk seems to be amplified
by two factors: (1) the residents live in sparsely populated areas thatoffer fewer urgent care facilities and (2) the
residents are mostly poor, which hampers their ability to use and pay for these services.

4.1.1 Predictive Analysis. Prediction is the ultimate goal of data analytics. While this is enormously difficult
and prone to many unforeseen circumstances, statistically robust pattern analysis can make predicting the future
significantly more reliable. Although one can never be 100% sure, it can increase the odds to a point where it
is worth taking the risk. For the particular example of epidemic spread, health officials are highly interested in
identifying the US counties where the COVID-19 death rate might spike next. It would allow authorities to direct
test kits, allocate hospital care, increase contact tracing, alert the community, and so on. The patterns we find
are essentially predictions of the response variable—higher than average COVID-19 death rate.

In the following discussion, we turn the clock one month forward and explore whether the patterns we found
are indeed able to predict a higher-than-average growth in the COVID-19 death rates. The initial analyses were
conducted using data from May 10, 2020. In the following, we used the equivalent COVID-19 death statistics
from June 10, 2020. On that date, the US county-wise COVID-19 death rate average was 24.1 deaths per 100K
population, up from 16.8 on May 10—an increase of 7.3.

This particular pattern (poor, aging, rural counties) contains 106 counties. In May, 45 (42%) of these counties
had a COVID-19 death rate greater than the then-prevailing US county average. In June this number grew to
53 (50%) with 9 counties joining this subset, and one barely leaving it. The average death rate in May was
27.6 deaths/100K, while in June it was 46.4—an increase of 18.7 (2.6 × the US average).

Figure 2(a) plots the June county death rates sorted by the May county death rates, with the respective US-wide
county death rate as the zero line. Each data point along the x-axis corresponds to a county; the “county ID” is just
the number determined by the May death-rate sorting. We chose a line plot over a bar chart, since it better shows
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Fig. 2. Predictive power of pattern 1 (June vs. May 2020): (a) COVID-19 death rate by county adjusted for US-wide county

death rate average; (b) death growth rate by county adjusted for US-wide growth; (c) county map comparison.

the peaks (each tick on the x-axis is one county). We call the plot “adjusted,” since the blue curve represents the
May death rates minus the US average in May, and the red curve represents the June death rates minus the US
average in June. It can be clearly observed that the growth magnitudes of county death rates in June over May
were vastly higher than the respective death rate declines. The pattern predicts these strong upward trends.

Figure 2(b) clarifies this even more. Here, we plot the COVID-19 growth rate for each county in the pattern,
adjusted for the US-wide growth. In essence, this is the real growth generated by the pattern itself, corrected for
the overall US-wide trend. We can see that while some counties down-trended slightly, a large number of them
experienced strong upward growth. This stark contrast is also expressed in the two one-sided standard devia-
tions, where the standard deviation for the counties experiencing positive adjusted growth is 43.7 deaths/100K,
while the standard deviation for the counties experiencing a decline is a mere 6.0.

Figure 2(c) compares the pattern’s May county map with that of June. We observe that for quite a few of
these counties the COVID-19 death rate has markedly increased; the shallow blue coloring has turned to dark
blue. Other counties previously not affected, but fitting the respective pattern profile, have now seen their first
COVID-19 fatalities; they were invisible on the May map (colored white) but are now shaded in shallow blue on
the June map.

4.2 Pattern 2: Low Asian & High Minority Population, Poor Black Kids

This pattern starts out with “percent Asian population” giving rise to a very slim Box of High Risk on the left
(Figure 3(a)). The placement of the box signifies that a very low Asian population (<1.5%) is common for these
counties. Given that the pattern description is not complete, our pattern mining engine automatically refines it
by adding “percent minority” as a second dimension (Figure 3(b)). This sharpens our risk assessment to counties
with low rates of Asians but a strong minority population (above 4%). Yet, a third refinement step is still needed,
which leads to the final visualization in Figure 3(c), adding the aspect of “percentage of black children living
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Fig. 3. Example pattern 2: (a) 1st attribute: percentage of Asian county residents; (b) 2nd attribute: percentage of minority

county residents; (c) 3rd attribute: percentage of black children who live in poverty (d) map with the pattern’s counties.

in poverty” to the description. We observe that counties where this percentage is above 41% have an average
COVID-19 death rate above US average. A US map with these couties is shown in Figure 5(d).

This pattern reveals that counties where the minority population is high and where black children live in
poverty are on average especially hard hit by COVID-19. We also learn that these counties have a very low
Asian population. While the latter could indicate that awareness how to deal with a respiratory disease is low,
some may say that these pattern descriptors appear somewhat over-engineered. Yet, given the complexity of the
feature space this level of refinement might just be needed to separate high and low risk.

4.2.1 Predictive Analysis. This pattern is composed of 86 counties. In May, 44 (51%) of these counties had a
COVID-19 death rate greater than the then-prevailing US county average; in June, this number grew to 51 (59%)
with 9 counties joining this subset and 2 leaving it. The pattern’s average death rate in May was 28.7 deaths/100K,
while in June it was 50.0—an increase of 21.3 (nearly three times the US county-wise average).

As before, Figure 4(a) contrasts the June county death rates with those of May with the respective US-wide
county death rate as the zero line. It is clear that there is a strong upward trend from May to June. Counties
that already had a high death rate grew even more vigorously, while those that declined only minimally did so.
Further, we can also see a significant uptick in the death rate for counties on the low end in May

The adjusted growth rate (Figure 4(b)) clarifies this even more. Only two counties (on the left side of the plot)
showed a significant downward trend in the death rate. About half of the counties showed modest growths or
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Fig. 4. Predictive power of pattern 3 (June vs. May 2020): (a) COVID-19 death rate by county adjusted for US-wide county

death rate average; (b) death growth rate by county adjusted for US-wide growth; (c) county map comparison.

declines, while the other half exhibited strong or very strong growths. The standard deviation for the counties
experiencing positive adjusted growth is 26.5 deaths/100K, while for those in decline it is 8.5 (32%). The high
level of predictive power further confirms the choice of the three somewhat specialized pattern descriptors (see
our discussion above).

4.3 Correlation Mining

Correlation can reveal a linear association between two variables, such as exercise and health. But often correla-
tion only occurs in specific sub-populations; for example, there is a fairly strong correlation between arm length
and an athlete’s propensity to become a world class swimmer, while for some other sports the length of one’s
arm is only mildly relevant, if at all. The same applies to COVID-19 analytics. Important correlations are often
hidden with conventional correlation analysis when enacted over all counties. Conversely, our pattern mining
engine can reveal specific sets of counties where certain important correlations hold and so enable more targeted
COVID-19 testing and health policy making. Pattern 3 examines the results of our correlation mining via one
example.

4.3.1 Pattern 3: Severe Housing Cost Burden Correlates with COVID-19 Death Rates. The section headline
makes this claim, but the scatterplot in Figure 5(a) suggests that there actually is no apparent correlation between
severe housing cost burden and COVID-19 death rate; the correlation is a mere 10%. But in fact there are county
patterns where such a correlation holds, as we will see next.

Our correlation mining revealed that there indeed is a statistically significant linear relationship between
severe housing debt and COVID-19 death rate, but only for counties where the percent of home ownership is
greater than 71% and where the ratio of residents living below the ethical poverty line (EPL) is less than 8%. The
counties that fit this description are the purple points in the scatterplot shown in Figure 5(b). Considering only
these 102 counties raises the correlation to a moderate to high level of 62%.
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Fig. 5. Correlation mining: (a) COVID-19 death rate over the percentage of residents that suffer under severe housing cost

burden for each county (ρ=0.1); (b) only for counties where the percent of home ownership was high and where the ratio

of residents living below the ethical poverty line (EPL) was low. (ρ=0.62); (c) map with these counties, darker colors map to

higher unemployment and COVID-19 death rate.

The pattern indicates that the residents of these counties are typically well-to-do and live in houses or apart-
ments they own. The map in Figure 5(c) shows the counties that fit this description. They differ in the housing
debt burden rate; the higher the rate, the darker the color. And due to the correlation relationship we found,
darker colors also denote higher COVID-19 death rates.

We observe the higher affected (dark-blue-colored) counties are primarily in the Northeast region of the US,
as well as in the large metropolitan areas in the Midwest near the Great Lakes. While these have been widely
reported in the news, our analysis explains the specific characteristics that are shared among all of them, which,
when coupled with high housing debt burden, can make them particularly vulnerable to COVID-19 mortality.
While there are other US counties that also incurred high COVID-19 death rates, they are not characterized in
this way. They have other explanations we derived as well in our studies.

As one might imagine (see also the crisis leading up to the Great Recession in the late 2000s), there are home-
owners in these rich counties with high home ownership who cannot really afford their homes and as a result
run high housing debt. These homeowners struggle for money and might worry a great deal about their dire
situation, leading to extensive stress—a leading factor for reduced virus immune response. They may also not
have the luxury of hunkering down at their house, but need to take up jobs that require them to work outside.
They also might not have the funds for immediate medical care, cannot afford food delivery and possibly even
a car, requiring them to take public transportation. Then, as the percentage of these types of homeowners in a
county grows, so does the risk of COVID-19 infection and eventually death.

5 CONCLUSIONS AND FUTURE WORK

We have demonstrated that pattern analysis can be highly effective in defining the characteristics of counties
at risk of elevated COVID-19 death rates and that these characteristics also allow reliable predictions of future
death rates. The examples shown in this paper were randomly selected from a set of 297 patterns we found; we
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did not “cherry pick” the best results (more examples are on our webpage [28]). Overall, we compared the death
rates in May with those in June and found that for 98% of our patterns the death rate growth was 2–3 times
higher than the US average, while the remaining 2% grew at the average pace, and none slowed in growth below
the US average. These trends continued in July as well.

It is important to note that our patterns also identified counties that fit a certain profile but where the spread
of the disease had not hit yet. Others grew even more. Recognizing these trends early can be of tremendous help
in planning and advocating for the appropriate set of resources to ease the impact of the disease.

There are other machine learning approaches such as neural network, random forest, decision trees, or the
like that could be used to make predictions. But these predictions would just be probabilities of risk or death
rate figures. Health officials would not know why the risk exists or why the death rates will be so high. This
is a downside of what has become known as “black box AI.” The advantage of our explainable AI approach is
that it can explain why a county is at risk in the language of the factors that expose this risk. We believe that
these explanations and the stories they tell can help human decision makers in gaining trust in these predictions,
especially in a culture where predictions are often discounted at a local level. Furthermore, health officials will
also better understand why certain virus spread interventions might work better than others, and argue for these
more successfully in their local communities.

Current work focuses on providing recommendations for interventions. We can take a certain mitigation
measure as the target variable and use our pattern mining algorithm to identify groups of counties where the
outcome of this measure (assessed in decline of death rate) was higher (or lower) than usual.

REFERENCES
[1] J. Brainard. 2020. Scientists are drowning in COVID-19 papers. Can new tools keep them afloat?” Sci. Mag. Online. May 13, 2020. Re-

trieved from https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat.

[2] 2020. CORD-19: COVID-19 Open Research Dataset. Retrieved from https://www.semanticscholar.org/cord19.

[3] 2020. SSRN Coronavirus and Infectious Disease Research. Retrieved from https://www.ssrn.com/index.cfm/en/coronavirus/.

[4] A. Bertozzi, E. Franco, G. Mohler, M. Short, and D. Sledge. 2004. The challenges of modeling and forecasting the spread of COVID-19.

ArXiv Preprint ArXiv:2004.04741.

[5] C. Hou, J. Chen, Y. Zhou, L. Hua, J. Yuan, S. He, and Y. Guo, et al. 2019. The effectiveness of quarantine of Wuhan City against the

corona virus disease 2019 (COVID-19): A well-mixed SEIR model analysis. J. Med. Virol. 2020.

[6] Z. Yang, Z. Zeng, K. Wang, S. Wong, W. Liang, M. Zanin, and P. Liu, et al. 2020. Modified SEIR and AI prediction of the epidemics trend

of COVID-19 in China under public health interventions. J. Thorac. Dis. 12, 3 (2020), 165.

[7] 2020. University of Washington Institute for Health Metric and Education (IHME) COVID-19 Resources. Retrieved from http://www.

healthdata.org/covid.

[8] N. Zheng, S. Du, J. Wang, H. Zhang, W. Cui, Z. Kang, and T. Yang, et al. 2020. Predicting covid-19 in China using hybrid AI model. IEEE

Trans. Cybern. 2020.

[9] S. Ardabili, A. Mosavi, P. Ghamisi, F. Ferdinand, A. Varkonyi-Koczy, U. Reuter, T. Rabczuk, and P. Atkinson. 2020. Covid-19 outbreak

prediction with machine learning. SSRN Preprint, 2020 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580188.

[10] P. Bruce. 2020. Covid-19: epidemiological models vs. statistical models. Elder Res.: Data Sci., Mach. Learn., AI, April 13, 2020. Retrieved

from https://www.elderresearch.com/blog/covid-19-epidemiological-models-vs.-statistical-models.

[11] I. Holmdahl and C. Buckee. 2020. Wrong but useful—what Covid-19 epidemiologic models can and cannot tell us. New England J. Med.

2020.

[12] N. Jewell, J. Lewnard, B. Jewell. 2020. Caution warranted: Using the institute for health metrics and evaluation model for predicting

the course of the COVID-19 pandemic. Ann. Intern. Med. 173, 3 (2020), 226–227.

[13] C. Brow and M. Ravallion. 2020. Inequality and the coronavirus: Socioeconomic covariates of behavioral responses and viral outcomes

across US counties. National Bureau of Economic Research Working Paper, No. 27549, 2020. Retrieved on August 1, 2020 from https:

//www.nber.org/papers/w27549.

[14] C. Knittel and B. Ozaltun. 2020. What does and does not correlate with COVID-19 death rates. National Bureau of Economic Research

Working Paper, No. 27391, June 2020. Retrieved from https://www.medrxiv.org/content/10.1101/2020.06.09.20126805v1.

[15] F. Carozzi. 2020. Urban Density and Covid-19. Research Paper. Institute for the Study of Labor (IZA). Retrieved from https://papers.ssrn.

com/sol3/papers.cfm?abstract_id=3643204.

[16] Coronavirus Resource Center at Johns Hopkins University. Retrieved from https://coronavirus.jhu.edu/.

[17] Coronavirus Global Data Tracker. Retrieved from https://www.tableau.com/covid-19-coronavirus-data-resources.

Digital Government: Research and Practice, Vol. 2, No. 1, Article 12. Publication date: December 2020.

https://www.sciencemag.org/news/2020/05/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat
https://www.semanticscholar.org/cord19
https://www.ssrn.com/index.cfm/en/coronavirus/
http://www.healthdata.org/covid
http://www.healthdata.org/covid
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580188
https://www.elderresearch.com/blog/covid-19-epidemiological-models-vs.-statistical-models
https://www.nber.org/papers/w27549
https://www.nber.org/papers/w27549
https://www.medrxiv.org/content/10.1101/2020.06.09.20126805v1
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3643204
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3643204
https://coronavirus.jhu.edu/
https://www.tableau.com/covid-19-coronavirus-data-resources


Using Demographic Pattern Analysis to Predict COVID-19 Fatalities on the US County Level • 12:11

[18] Coronavirus Visual Analysis Hub. Retrieved from https://www.tibco.com/covid19.

[19] Datawrapper interactive visualization. Retrieved from https://www.datawrapper.de/.

[20] Nextstrain real-time tracking of pathogen evolution. Retrieved from https://nextstrain.org/.

[21] Google COVID-19 Mobility Reports. Retrieved from https://www.google.com/covid19/mobility/.

[22] UNCOVER COVID-19 Challenge data. Retrieved from https://www.kaggle.com/roche-data-science-coalition/uncover.

[23] The CDC Social Vulnerability Index. Retrieved from https://svi.cdc.gov/.

[24] H. Kriegel, P. Kröger, and A. Zimek. 2009. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering,

and correlation clustering. ACM Trans. Knowl. Discov. Data 3, 1 (2009) 1.

[25] B. Wang and K. Mueller. 2014. Does 3D really make sense for visual cluster analysis? Yes! In Proceedings of the IEEE VIS Workshop on

3DVis: Does 3D Really Make Sense for Data Visualization?.

[26] P. McKnight and J. Najab. 2010. Mann-Whitney U test. The Corsini Encyclopedia of Psychology. John Wiley & Sons, Inc.

[27] J. Han, J. Pei, and Y. Yin. 2000. Mining frequent patterns without candidate generation. ACM SIGMOD 29, 2 (2000), 1–12.

[28] COVID-18 Data Analytics. Retrieved from https://akaikaeru.com/covid-19-1.

Received June 2020; revised August 2020; accepted October 2020

Digital Government: Research and Practice, Vol. 2, No. 1, Article 12. Publication date: December 2020.

https://www.tibco.com/covid19
https://www.datawrapper.de/
https://nextstrain.org/
https://www.google.com/covid19/mobility/
https://www.kaggle.com/roche-data-science-coalition/uncover
https://svi.cdc.gov/
https://akaikaeru.com/covid-19-1

